Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Dev Neurosci ; 83(6): 489-504, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340513

RESUMO

Maple syrup urine disease (MSUD) is caused by a deficiency in the activity of the branched-chain α-ketoacid dehydrogenase (BCKD) complex, promoting the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, as well as their respective α-keto acids. MSUD is an autosomal recessive hereditary metabolic disorder characterized by ketoacidosis, ataxia, coma, and mental and psychomotor retardation. The mechanisms involved in the brain damage caused by MSUD are not fully understood. Early diagnosis and treatment, as well as proper control of metabolic decompensation crises, are crucial for patients' survival and for a better prognosis. The recommended treatment consists of a high-calorie diet with restricted protein intake and specific formulas containing essential amino acids, except those accumulated in MSUD. This treatment will be maintained throughout life, being adjusted according to the patients' nutritional needs and BCAA concentration. Because dietary treatment may not be sufficient to prevent neurological damage in MSUD patients, other therapeutic strategies have been studied, including liver transplantation. With transplantation, it is possible to obtain an increase of about 10% of the normal BCKD in the body, an amount sufficient to maintain amino acid homeostasis and reduce metabolic decompensation crises. However, the experience related to this practice is very limited when considering the shortage of liver for transplantation and the risks related to the surgical procedure and immunosuppression. Thus, the purpose of this review is to survey the benefits, risks, and challenges of liver transplantation in the treatment of MSUD.


Assuntos
Transplante de Fígado , Doença da Urina de Xarope de Bordo , Humanos , Doença da Urina de Xarope de Bordo/metabolismo , Aminoácidos de Cadeia Ramificada , Leucina , Dieta
2.
Int J Dev Neurosci ; 82(8): 772-788, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129623

RESUMO

Urea cycle disorders (UCD) are a group of genetic diseases caused by deficiencies in the enzymes and transporters involved in the urea cycle. The impairment of the cycle results in ammonia accumulation, leading to neurological dysfunctions and poor outcomes to affected patients. The aim of this study is to investigate and describe UCD patients' principal clinical and biochemical presentations to support professionals on urgent diagnosis and quick management, aiming better outcomes for patients. We explored medical records of 30 patients diagnosed in a referral center from Brazil to delineate UCD clinical and biochemical profile. Patients demonstrated a range of signs and symptoms, such as altered levels of consciousness, acute encephalopathy, seizures, progressive loss of appetite, vomiting, coma, and respiratory distress, in most cases combined with high levels of ammonia, which is an immediate biomarker, leading to a UCD suspicion. The most prevalent UCD detected were ornithine transcarbamylase deficiency, followed by citrullinemia type 1, hyperargininemia, carbamoyl phosphate synthase 1 deficiency, and argininosuccinic aciduria. Clinical symptoms were highly severe, being the majority developmental and neurological disabilities, with 20% of death rate. Laboratory analysis revealed high levels of ammonia (mean ± SD: 860 ± 470 µmol/L; reference value: ≤80 µmol/L), hypoglycemia, metabolic acidosis, and high excretion of orotic acid in the urine (except in carbamoyl phosphate synthetase 1 [CPS1] deficiency). We emphasize the need of urgent identification of UCD clinical and biochemical conditions, and immediate measurement of ammonia, to enable the correct diagnosis and increase the chances of patients' survival, minimizing neurological and psychomotor damage caused by hepatic encephalopathy.


Assuntos
Encefalopatia Hepática , Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Distúrbios Congênitos do Ciclo da Ureia , Humanos , Hiperamonemia/complicações , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Encefalopatia Hepática/complicações , Encefalopatia Hepática/diagnóstico , Amônia , Distúrbios Congênitos do Ciclo da Ureia/complicações , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Distúrbios Congênitos do Ciclo da Ureia/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/complicações , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Doença da Deficiência de Ornitina Carbomoiltransferase/genética
3.
Cell Mol Neurobiol ; 42(8): 2593-2610, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34665389

RESUMO

Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.


Assuntos
Hiperamonemia , Doenças Metabólicas , Amônia/metabolismo , Ácidos Graxos , Humanos , Hiperamonemia/complicações , Hiperamonemia/diagnóstico , Recém-Nascido , Ureia/metabolismo
4.
Cell Mol Neurobiol ; 42(3): 521-532, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32876899

RESUMO

Mitochondrial fatty acid ß-oxidation disorders (FAODs) are a group of about 20 diseases which are caused by specific mutations in genes that codify proteins or enzymes involved in the fatty acid transport and mitochondrial ß-oxidation. As a consequence of these inherited metabolic defects, fatty acids can not be used as an appropriate energetic source during special conditions, such as prolonged fasting, exercise or other catabolic states. Therefore, patients usually present hepatopathy, cardiomyopathy, severe skeletal myopathy and neuropathy, besides biochemical features like hypoketotic hypoglycemia, metabolic acidosis, hypotony and hyperammonemia. This set of symptoms seems to be related not only with the energy deficiency, but also with toxic effects provoked by fatty acids and carnitine derivatives accumulated in the tissues of the patients. The understanding of the mechanisms by which these metabolites provoke tissue injury in FAODs is crucial for the developmental of novel therapeutic strategies that promote increased life expectancy, as well as improved life quality for patients. In this sense, the objective of this review is to present evidence from the scientific literature on the role of oxidative damage and mitochondrial dysfunction in the pathogenesis of the most prevalent FAODs: medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. It is expected that the findings presented in this review, obtained from both animal model and patients studies, may contribute to a better comprehension of the pathophysiology of these diseases.


Assuntos
Acidose , Erros Inatos do Metabolismo Lipídico , Doenças Musculares , Acidose/metabolismo , Animais , Ácidos Graxos , Humanos , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Mitocôndrias/metabolismo , Doenças Musculares/metabolismo , Oxirredução , Estresse Oxidativo
5.
Clin. biomed. res ; 41(1): 57-64, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1255192

RESUMO

Introduction: Several studies in the literature have evaluated the role of oxidative stress and adjuvant therapies for X-linked adrenoleukodystrophy (X-ALD). Here, we investigated whether n-acetyl-L-cysteine (NAC) and rosuvastatin (RSV) could influence the generation of reactive species, redox status and nitrative stress in fibroblasts from asymptomatic patients with X-ALD. Methods: Skin biopsy samples were cultured and treated for 2 hours (37 °C) with NAC and RSV. Results: X-ALD fibroblasts generated high levels of reactive oxygen species. These levels were significantly lower in fibroblasts treated with NAC and RSV relative to untreated samples. The X-ALD fibroblasts from asymptomatic patients also had higher catalase activity, and only NAC was able to increase enzyme activity in the samples. Conclusions: Our results indicated that NAC and RSV were able to improve oxidative stress parameters in fibroblasts from asymptomatic patients with X-ALD, showing that adjuvant antioxidant therapy may be a promising treatment strategy for asymptomatic patients with this disease. (AU)


Assuntos
Humanos , Masculino , Feminino , Acetilcisteína , Estresse Oxidativo , Adrenoleucodistrofia/terapia , Rosuvastatina Cálcica , Fibroblastos
6.
Arch Med Res ; 49(3): 205-212, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-30119976

RESUMO

BACKGROUND: Inborn errors of metabolism (IEM) are diseases which can lead to accumulation of toxic metabolites in the organism. AIM OF THE STUDY: To investigate, by selective screening, mitochondrial fatty acid oxidation defects (FAOD) and organic acidemias in Brazilian individuals with clinical suspicion of IEM. METHODS: A total of 7,268 individuals, from different regions of Brazil, had whole blood samples impregnated on filter paper which were submitted to the acylcarnitines analysis by liquid chromatography/tandem mass spectrometry (LC/MS/MS) at the Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Brazil, during July 2008-July 2016. RESULTS: Our results showed that 68 patients (0.93%) were diagnosed with FAOD (19 cases) and organic acidemias (49 cases). The most prevalent FAOD was multiple acyl CoA dehydrogenase deficiency (MADD), whereas glutaric type I and 3-OH-3-methylglutaric acidemias were the most frequent disorders of organic acid metabolism. Neurologic symptoms and metabolic acidosis were the most common clinical and laboratory features, whereas the average age of the patients at diagnosis was 2.3 years. CONCLUSIONS: Results demonstrated a high incidence of glutaric acidemia type I and 3-OH-3- methylglutaric acidemia in Brazil and an unexpectedly low incidence of FAOD, particularly medium-chain acyl-CoA dehydrogenase deficiency (MCADD).


Assuntos
Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias Metabólicas/diagnóstico , Carnitina/análogos & derivados , Ácidos Graxos/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo Lipídico/diagnóstico , Acil-CoA Desidrogenase/sangue , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Encefalopatias Metabólicas/sangue , Brasil , Carnitina/análise , Pré-Escolar , Cromatografia Líquida , Feminino , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/sangue , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/sangue , Masculino , Programas de Rastreamento , Oxirredução , Prevalência , Espectrometria de Massas em Tandem , Adulto Jovem
7.
Int J Dev Neurosci ; 66: 18-23, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29197565

RESUMO

BACKGROUND: Niemann-Pick type C (NP-C), one of 50 inherited lysosomal storage disorders, is caused by NPC protein impairment that leads to unesterified cholesterol accumulation in late endosomal/lysosomal compartments. The clinical manifestations of NP-C include hepatosplenomegaly, neurological and psychiatric symptoms. Current diagnosis for NP-C is based on observation of the accumulated cholesterol in fibroblasts of affected individuals, using an invasive and time expensive test, called Filipin staining. Lately, two metabolites that are markedly increased in NP-C patients are arising as biomarkers for this disease screening: 7-ketocholesterol and cholestane-3ß,5α,6ß-triol, both oxidized cholesterol products. OBJECTIVE: In this work, we aimed to evaluate the performance of cholestane-3ß,5α,6ß-triol analysis for the screening and monitoring of NPC patients, correlating it with chitotriosidase levels, Filipin staining and molecular analysis. It was investigated 76 non-treated individuals with NP-C suspicion and also 7 patients with previous NP-C diagnosis under treatment with miglustat, in order to verify the cholestane-3ß,5α,6ß-triol value as a tool for therapy monitoring. RESULTS: Considering molecular assay as golden standard, it was verified that cholestane-3ß,5α,6ß-triol analysis presented 88% of sensitivity, 96.08% of specificity, a positive and negative predictive value calculated in 91.67% and 94.23%, respectively, for the diagnosis of NP-C. Chitotriosidase levels were increased in patients with positive molecular analysis for NP-C. For Filipin staining, it was found 1 false positive, 7 false negative and 24 inconclusive cases, showing that this assay has important limitations for NP-C diagnosis. Besides, we found a significant decrease in cholestane-3ß,5α,6ß-triol concentrations in NP-C patients under therapy with miglustat when compared to non-treated patients. CONCLUSION: Taken together, the present data show that cholestane-3ß,5α,6ß-triol analysis has a high potential to be an important NP-C screening assay, and also can be used for therapy monitorization with miglustat in NP-C patients.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Glicoproteínas de Membrana/genética , Mutação/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , 1-Desoxinojirimicina/uso terapêutico , Adolescente , Adulto , Criança , Colestanóis/sangue , Feminino , Filipina/metabolismo , Hexosaminidases/metabolismo , Humanos , Masculino , Doença de Niemann-Pick Tipo C/patologia , Pele/metabolismo , Pele/patologia , Adulto Jovem
8.
Mol Genet Metab Rep ; 11: 46-53, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28487826

RESUMO

Morquio A disease (Mucopolysaccharidosis type IVA, MPS IVA) is one of the 11 mucopolysaccharidoses (MPSs), a heterogeneous group of inherited lysosomal storage disorders (LSDs) caused by deficiency in enzymes need to degrade glycosaminoglycans (GAGs). Morquio A is characterized by a decrease in N-acetylgalactosamine-6-sulfatase activity and subsequent accumulation of keratan sulfate and chondroitin 6-sulfate in cells and body fluids. As the pathophysiology of this LSD is not completely understood and considering the previous results of our group concerning oxidative stress in Morquio A patients receiving enzyme replacement therapy (ERT), the aim of this study was to investigate oxidative stress parameters in Morquio A patients at diagnosis. It was studied 15 untreated Morquio A patients, compared with healthy individuals. The affected individuals presented higher lipid peroxidation, assessed by urinary 15-F2t-isoprostane levels and no protein damage, determined by sulfhydryl groups in plasma and di-tyrosine levels in urine. Furthermore, Morquio A patients showed DNA oxidative damage in both pyrimidines and purines bases, being the DNA damage positively correlated with lipid peroxidation. In relation to antioxidant defenses, affected patients presented higher levels of reduced glutathione (GSH) and increased activity of glutathione peroxidase (GPx), while superoxide dismutase (SOD) and glutathione reductase (GR) activities were similar to controls. Our findings indicate that Morquio A patients present at diagnosis redox imbalance and oxidative damage to lipids and DNA, reinforcing the idea about the importance of antioxidant therapy as adjuvant to ERT, in this disorder.

9.
Clin Chim Acta ; 466: 46-53, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28082023

RESUMO

Lysosomal Storage Disorders (LSD) comprise a heterogeneous group of >50 genetic disorders caused by mutations in genes that encode lysosomal enzymes, transport proteins or other gene products essential for a functional lysosomal system. As a result, abnormal accumulation of substrates within the lysosome leads to a progressive cellular impairment and dysfunction of numerous organs and systems. The exact mechanisms underlying the pathophysiology of LSD remain obscure. Previous studies proposed a relationship between oxidative stress and the pathogenesis of several inborn errors of metabolism, including LSD. Considering these points, in this paper it was reviewed oxidative stress and emerging antioxidant therapy in LSD, emphasizing studies with biological samples from patients affected by this group of conditions. These studies allow presuming that metabolites accumulated in LSD cause an increase of lysosomes' number and size, which may induce excessive production of reactive species and/or deplete the tissue antioxidant capacity, leading to damage in biomolecules. In vitro and in vivo evidence showed that cell oxidative process occurs in LSD and probably contributes to the pathophysiology of these disorders. In this context, it is possible to suggest that, in the future, antioxidants could come to be used as adjuvant therapy for LSD patients.


Assuntos
Doenças por Armazenamento dos Lisossomos/fisiopatologia , Estresse Oxidativo , Antioxidantes/uso terapêutico , Biomarcadores/análise , Humanos , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
10.
J. inborn errors metab. screen ; 5: e160048, 2017. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1090934

RESUMO

Abstract Background: Interest in screening methods for lysosomal storage diseases (LSDs) has increased in recent years, since early diagnosis and treatment are essential to prevent or attenuate the onset of symptoms and the complications of these diseases. In the current work, we evaluated the performance of tandem mass spectrometry (MS/MS) for the detection of some LSDs, aiming the future use of this methodology for the screening of these disorders. Methods: Standard curves and quality control dried blood spots were assayed to evaluate the precision, linearity, and accuracy. A total of 150 controls were grouped according to age and subjected to measurement of lysosomal enzymes deficient in Niemann-Pick A/B, Krabbe, Gaucher, Fabry, Pompe, and Mucopolysaccharidosis type I diseases. Samples from 59 affected patients with a diagnosis of LSDs previously confirmed by fluorimetric methods were analyzed. Results: Data from standard calibration demonstrated good linearity and accuracy and the intra- and interassay precisions varied from 1.17% to 11.60% and 5.39% to 31.24%, respectively. Except for galactocerebrosidase and ?-l-iduronidase, enzyme activities were significantly higher in newborns compared to children and adult controls. Affected patients presented enzymatic activities significantly lower compared to all control participants. Conclusion: Our results show that MS/MS is a promising methodology, suitable for the screening of LSDs, but accurate diagnoses will depend on its correlation with other biochemical and/or molecular analyses.

11.
Transl Res ; 176: 29-37.e1, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27450046

RESUMO

Temporary interruption of enzyme replacement therapy (ERT) in patients with different lysosomal storage disorders may happen for different reasons (adverse reactions, issues with reimbursement, logistic difficulties, and so forth), and the impact of the interruption is still uncertain. In the present work, we studied the effects of the interruption of intravenous ERT (Laronidase, Genzyme) followed by its reintroduction in mice with the prototypical lysosomal storage disorder mucopolysaccharidosis type I, comparing to mice receiving continuous treatment, untreated mucopolysaccharidosis type I mice, and normal mice. In the animals which treatment was temporarily interrupted, we observed clear benefits of treatment in several organs (liver, lung, heart, kidney, and testis) after reintroduction, but a worsening in the thickness of the aortic wall was detected. Furthermore, these mice had just partial improvements in behavioral tests, suggesting some deterioration in the brain function. Despite worsening is some disease aspects, urinary glycosaminoglycans levels did not increase during interruption, which indicates that this biomarker commonly used to monitor treatment in patients should not be used alone to assess treatment efficacy. The deterioration observed was not caused by the development of serum antienzyme antibodies. All together our results suggest that temporary ERT interruption leads to deterioration of function in some organs and should be avoided whenever possible.


Assuntos
Terapia de Reposição de Enzimas , Mucopolissacaridose I/terapia , Animais , Anticorpos/sangue , Aorta/patologia , Comportamento Animal , Encéfalo/patologia , Eletrocardiografia , Proteína Glial Fibrilar Ácida/metabolismo , Glicosaminoglicanos/urina , Testes de Função Cardíaca , Camundongos , Mucopolissacaridose I/diagnóstico por imagem , Mucopolissacaridose I/fisiopatologia , Mucopolissacaridose I/urina
12.
Int J Dev Neurosci ; 47(Pt B): 259-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456498

RESUMO

Oxidative stress has been proposed as an important pathophysiologic feature of various inborn errors of metabolism, including phenylketonuria (PKU). Considering that there are few studies relating oxidative stress and inflammation directly in PKU disease, the aim of this study was to evaluate and correlate oxidative damage to biomolecules, antioxidant defenses, pro-inflammatory cytokines, phenylalanine (Phe) and its metabolites (phenyllactic acid--PLA and phenylacetic acid--PAA) levels in urine and plasma from patients with PKU under dietary treatment. We observed a marked increase of isoprostanes, which is a lipid peroxidation biomarker, in urine from these treated patients. Next, we demonstrated that protein oxidative damage, measured by di-tyrosine formation, was significantly increased in urine from PKU treated patients and that decreased urinary antioxidant capacity was also observed. Our findings concerning to the inflammatory cytokines interleukin-6 and interleukin-1ß, both significantly increased in these patients, provide evidence that the pro-inflammatory state occurs. Besides, interleukin-1ß was positively correlated with isoprostanes. We observed a negative correlation between interleukin-6 and interleukin-10, an anti-inflammatory cytokine. Di-tyrosine was positively correlated with Phe, which indicates oxidative damage to proteins, as well as with PAA. These findings may suggest that the protein damage may be induced by Phe and its metabolite PAA in PKU. Our results indicate that pro-oxidant and pro-inflammatory states occur and are, in part, correlated and protein oxidation seems to be induced by Phe and PPA in PKU patients.


Assuntos
Biomarcadores/urina , Citocinas/sangue , Estresse Oxidativo , Fenilcetonúrias/sangue , Fenilcetonúrias/urina , Adolescente , Criança , Creatina Quinase/sangue , Dinoprosta/análogos & derivados , Dinoprosta/urina , Feminino , Humanos , Peroxidação de Lipídeos , Masculino , Fenilalanina , Espécies Reativas de Oxigênio , Superóxido Dismutase/urina , Substâncias Reativas com Ácido Tiobarbitúrico , Tirosina , Adulto Jovem
13.
Metab Brain Dis ; 30(5): 1167-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26002427

RESUMO

Maple Syrup Urine Disease (MSUD) is a metabolic disorder caused by a severe deficiency of the branched-chain α-keto acid dehydrogenase complex activity which leads to the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine and valine and their respective α-keto-acids in body fluids. The main symptomatology presented by MSUD patients includes ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay and mental retardation, but, the neurological pathophysiologic mechanisms are poorly understood. The treatment consists of a low protein diet and a semi-synthetic formula restricted in BCAA and supplemented with essential amino acids. It was verified that MSUD patients present L-carnitine (L-car) deficiency and this compound has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. Since there are no studies in the literature reporting the inflammatory profile of MSUD patients and the L-car role on the inflammatory response in this disorder, the present study evaluates the effect of L-car supplementation on plasma inflammatory cytokines interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interferon-gamma (INF-É£), and a correlation with malondialdehyde (MDA), as a marker of oxidative damage, and with free L-car plasma levels in treated MSUD patients. Significant increases of IL-1ß, IL-6, and INF-É£ were observed before the treatment with L-car. Moreover, there is a negative correlation between all cytokines tested and L-car concentrations and a positive correlation among the MDA content and IL-1ß and IL-6 values. Our data show that L-car supplementation can improve cellular defense against inflammation and oxidative stress in MSUD patients and may represent an additional therapeutic approach to the patients affected by this disease.


Assuntos
Carnitina/uso terapêutico , Suplementos Nutricionais , Mediadores da Inflamação/sangue , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Masculino
14.
Cell Mol Neurobiol ; 35(6): 899-911, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25805165

RESUMO

Cystathionine-ß-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations.


Assuntos
Arildialquilfosfatase/sangue , Butirilcolinesterase/sangue , Homocistinúria/sangue , Lipídeos/sangue , Oxidantes/sangue , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Feminino , Ácido Fólico/sangue , Ácido Fólico/fisiologia , Homocistinúria/genética , Humanos , Masculino , Estresse Oxidativo/fisiologia , Vitamina B 12/sangue , Vitamina B 12/fisiologia , Adulto Jovem
15.
Mol Cell Biochem ; 402(1-2): 149-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557019

RESUMO

3-hydroxy-3-methylglutaric aciduria (HMGA; OMIM 246450) is a rare autosomal recessive disorder, caused by the deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (4.1.3.4), which results in the accumulation of 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA) acids in tissues and biological fluids of affected individuals. Recent in vivo and in vitro animal studies have demonstrated that the accumulation of these metabolites can disturb the cellular redox homeostasis, which can contribute to the neurological manifestations presented by the patients. So, in the present work, we investigated oxidative stress parameters in plasma and urine samples from HMGA patients, obtained at the moment of diagnosis of this disorder and during therapy with low-protein diet and L-carnitine supplementation. It was verified that untreated HMGA patients presented higher levels of urinary di-tyrosine and plasma thiobarbituric acid-reactive substances (TBA-RS), which are markers of protein and lipid oxidative damage, respectively, as well as a reduction of the urinary antioxidant capacity. Treated HMGA patients also presented an increased protein oxidative damage, as demonstrated by their higher concentrations of plasma protein carbonyl groups and urinary di-tyrosine, as well as by the reduction of total sulfhydryl groups in plasma, in relation to controls. On the other hand, HMGA patients under therapy presented normal levels of TBA-RS and urinary antioxidant capacity, which can be related, at least in part, to the antioxidant and antiperoxidative effects exerted by L-carnitine. The results of this work are the first report showing that a redox imbalance occurs in patients with HMGA what reinforces the importance of the antioxidant therapy in this disorder.


Assuntos
Acetil-CoA C-Acetiltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/urina , Meglutol/urina , Estresse Oxidativo , Acetil-CoA C-Acetiltransferase/urina , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Humanos , Lactente , Carbonilação Proteica
16.
J Inherit Metab Dis ; 37(5): 783-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24623196

RESUMO

The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and protein oxidative damage and antioxidant defenses in asymptomatic, nonstressed, MCAD-deficient patients and healthy controls. Patients were subdivided into three groups based on therapy: patients without prescribed supplementation, patients with carnitine supplementation, and patients with carnitine plus riboflavin supplementation. Compared with healthy controls, nonsupplemented MCAD-deficient patients and patients receiving carnitine supplementation displayed decreased plasma sulfhydryl content (indicating protein oxidative damage). Increased erythrocyte superoxide dismutase (SOD) activity in patients receiving carnitine supplementation probably reflects a compensatory mechanism for scavenging reactive species formation. The combination of carnitine plus riboflavin was not associated with oxidative damage. These are the first indications that MCAD-deficient patients experience protein oxidative damage and that combined supplementation of carnitine and riboflavin may prevent these biochemical alterations. Results suggest involvement of free radicals in the pathophysiology of MCAD deficiency. The underlying mechanisms behind the increased SOD activity upon carnitine supplementation need to be determined. Further studies are necessary to determine the clinical relevance of oxidative stress, including the possibility of antioxidant therapy.


Assuntos
Acil-CoA Desidrogenase/deficiência , Antioxidantes/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Acil-CoA Desidrogenase/metabolismo , Adolescente , Adulto , Carnitina/uso terapêutico , Criança , Pré-Escolar , Estudos Transversais , Eritrócitos/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Metabolismo dos Lipídeos/genética , Masculino , Riboflavina/uso terapêutico , Vitaminas/uso terapêutico , Adulto Jovem
17.
Gene ; 539(2): 270-4, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24534463

RESUMO

High blood levels of homocysteine (Hcy) are found in patients affected by homocystinuria, a genetic disorder caused by deficiency of cystathionine ß-synthase (CBS) activity, as well as in nutritional deficiencies (vitamin B12 or folate) and in abnormal renal function. We previously demonstrated that lipid and protein oxidative damage is increased and the antioxidant defenses diminished in plasma of CBS-deficient patients, indicating that oxidative stress is involved in the pathophysiology of this disease. In the present work, we extended these investigations by evaluating DNA damage through the comet assay in peripheral leukocytes from CBS-deficient patients, as well as by analyzing of the in vitro effect of Hcy on DNA damage in white blood cells. We verified that DNA damage was significantly higher in the CBS-deficient patients under treatment based on a protein-restricted diet and pyridoxine, folic acid, betaine and vitamin B12 supplementation, when compared to controls. Furthermore, the in vitro study showed a concentration-dependent effect of Hcy inducing DNA damage. Taken together, the present data indicate that DNA damage occurs in treated CBS-deficient patients, possibly due to high Hcy levels.


Assuntos
Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Dano ao DNA , Homocisteína/sangue , Homocistinúria/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Ensaio Cometa , Cistationina beta-Sintase/sangue , Feminino , Seguimentos , Homocistinúria/sangue , Homocistinúria/enzimologia , Humanos , Masculino , Prognóstico , Adulto Jovem
18.
Gene ; 533(2): 469-76, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24148561

RESUMO

In recent years increasing evidence has emerged suggesting that oxidative stress is involved in the pathophysiology of a number of inherited metabolic disorders. However the clinical use of classical antioxidants in these diseases has been poorly evaluated and so far no benefit has been demonstrated. l-Carnitine is an endogenous substance that acts as a carrier for fatty acids across the inner mitochondrial membrane necessary for subsequent beta-oxidation and ATP production. Besides its important role in the metabolism of lipids, l-carnitine is also a potent antioxidant (free radical scavenger) and thus may protect tissues from oxidative damage. This review addresses recent findings obtained from patients with some inherited neurometabolic diseases showing that l-carnitine may be involved in the reduction of oxidative damage observed in these disorders. For some of these diseases, reduced concentrations of l-carnitine may occur due to the combination of this compound to the accumulating toxic metabolites, especially organic acids, or as a result of protein restricted diets. Thus, l-carnitine supplementation may be useful not only to prevent tissue deficiency of this element, but also to avoid oxidative damage secondary to increased production of reactive species in these diseases. Considering the ability of l-carnitine to easily cross the blood-brain barrier, l-carnitine supplementation may also be beneficial in preventing neurological damage derived from oxidative injury. However further studies are required to better explore this potential.


Assuntos
Antioxidantes/uso terapêutico , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Carnitina/uso terapêutico , Suplementos Nutricionais , Fármacos Neuroprotetores/uso terapêutico , Animais , Carnitina/deficiência , Carnitina/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia
19.
Cell Mol Neurobiol ; 34(2): 157-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24220995

RESUMO

Maple syrup urine disease (MSUD) is a metabolic disease caused by a deficiency in the branched-chain α-keto acid dehydrogenase complex, leading to the accumulation of branched-chain keto acids and their corresponding branched-chain amino acids (BCAA) in patients. Treatment involves protein-restricted diet and the supplementation with a specific formula containing essential amino acids (except BCAA) and micronutrients, in order to avoid the appearance of neurological symptoms. Although the accumulation of toxic metabolites is associated to appearance of symptoms, the mechanisms underlying the brain damage in MSUD remain unclear, and new evidence has emerged indicating that oxidative stress contributes to this damage. In this context, this review addresses some of the recent findings obtained from cells lines, animal studies, and from patients indicating that oxidative stress is an important determinant of the pathophysiology of MSUD. Recent works have shown that the metabolites accumulated in the disease induce morphological alterations in C6 glioma cells through nitrogen reactive species generation. In addition, several works demonstrated that the levels of important antioxidants decrease in animal models and also in MSUD patients (what have been attributed to protein-restricted diets). Also, markers of lipid, protein, and DNA oxidative damage have been reported in MSUD, probably secondary to the high production of free radicals. Considering these findings, it is well-established that oxidative stress contributes to brain damage in MSUD, and this review offers new perspectives for the prevention of the neurological damage in MSUD, which may include the use of appropriate antioxidants as a novel adjuvant therapy for patients.


Assuntos
Doença da Urina de Xarope de Bordo/patologia , Sistema Nervoso/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Radicais Livres/metabolismo , Humanos
20.
Metab Brain Dis ; 28(4): 563-70, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23532706

RESUMO

Diabetes mellitus is characterized by hyperglycemia resulting from defects on insulin secretion, insulin action, or both. It has recently become clear that the central nervous system is not spared from the deleterious effects of diabetes, since diabetic encephalopathy was recognized as a complication of this heterogeneous metabolic disorder. There is a well recognized association between depression and diabetes, once prevalence of depression in diabetic patients is higher than in general population, and clonazepam is being used to treat this complication. Oxidative stress is widely accepted as playing a key mediatory role in the development and progression of diabetes and its complications. In this work we analyzed DNA damage by comet assay and lipid damage in prefrontal cortex, hippocampus and striatum of streptozotocin-induced diabetic rats submitted to the forced swimming test. It was verified that the diabetic group presented DNA and lipid damage in the brain areas evaluated, when compared to the control groups. Additionally, a significant reduction of the DNA and lipid damage in animals treated with insulin and/or clonazepam was observed. These data suggest that the association of these two drugs could protect against DNA and lipid damage in diabetic rats submitted to the forced swimming test, an animal model of depression.


Assuntos
Encéfalo/efeitos dos fármacos , Clonazepam/uso terapêutico , Depressão/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Moduladores GABAérgicos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Clonazepam/farmacologia , Dano ao DNA/efeitos dos fármacos , Depressão/complicações , Depressão/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Moduladores GABAérgicos/farmacologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...